8,232 research outputs found

    GW25-e0285 The Diagnostic Probability of Suspected Acute Pulmonary Thromboembolism Based on the Objective Clinical Tests

    Get PDF

    Assisted optimal state discrimination without entanglement

    Full text link
    A fundamental problem in quantum information is to explore the roles of different quantum correlations in a quantum information procedure. Recent work [Phys. Rev. Lett., 107 (2011) 080401] shows that the protocol for assisted optimal state discrimination (AOSD) may be implemented successfully without entanglement, but with another correlation, quantum dissonance. However, both the original work and the extension to discrimination of dd states [Phys. Rev. A, 85 (2012) 022328] have only proved that entanglement can be absent in the case with equal a \emph{priori} probabilities. By improving the protocol in [Sci. Rep., 3 (2013) 2134], we investigate this topic in a simple case to discriminate three nonorthogonal states of a qutrit, with positive real overlaps. In our procedure, the entanglement between the qutrit and an auxiliary qubit is found to be completely unnecessary. This result shows that the quantum dissonance may play as a key role in optimal state discrimination assisted by a qubit for more general cases.Comment: 6 pages, 3 figures. Accepted by EPL. We extended the protocol for assisted optimal state discrimination to the case with positive real overlaps, and presented a proof for the absence of entanglemen

    UniBrain: Unify Image Reconstruction and Captioning All in One Diffusion Model from Human Brain Activity

    Full text link
    Image reconstruction and captioning from brain activity evoked by visual stimuli allow researchers to further understand the connection between the human brain and the visual perception system. While deep generative models have recently been employed in this field, reconstructing realistic captions and images with both low-level details and high semantic fidelity is still a challenging problem. In this work, we propose UniBrain: Unify Image Reconstruction and Captioning All in One Diffusion Model from Human Brain Activity. For the first time, we unify image reconstruction and captioning from visual-evoked functional magnetic resonance imaging (fMRI) through a latent diffusion model termed Versatile Diffusion. Specifically, we transform fMRI voxels into text and image latent for low-level information and guide the backward diffusion process through fMRI-based image and text conditions derived from CLIP to generate realistic captions and images. UniBrain outperforms current methods both qualitatively and quantitatively in terms of image reconstruction and reports image captioning results for the first time on the Natural Scenes Dataset (NSD) dataset. Moreover, the ablation experiments and functional region-of-interest (ROI) analysis further exhibit the superiority of UniBrain and provide comprehensive insight for visual-evoked brain decoding

    Most robust and fragile two-qubit entangled states under depolarizing channels

    Full text link
    For a two-qubit system under local depolarizing channels, the most robust and most fragile states are derived for a given concurrence or negativity. For the one-sided channel, the pure states are proved to be the most robust ones, with the aid of the evolution equation for entanglement given by Konrad et al. [Nat. Phys. 4, 99 (2008)]. Based on a generalization of the evolution equation for entanglement, we classify the ansatz states in our investigation by the amount of robustness, and consequently derive the most fragile states. For the two-sided channel, the pure states are the most robust for a fixed concurrence. Under the uniform channel, the most fragile states have the minimal negativity when the concurrence is given in the region [1/2,1]. For a given negativity, the most robust states are the ones with the maximal concurrence, and the most fragile ones are the pure states with minimum of concurrence. When the entanglement approaches zero, the most fragile states under general nonuniform channels tend to the ones in the uniform channel. Influences on robustness by entanglement, degree of mixture, and asymmetry between the two qubits are discussed through numerical calculations. It turns out that the concurrence and negativity are major factors for the robustness. When they are fixed, the impact of the mixedness becomes obvious. In the nonuniform channels, the most fragile states are closely correlated with the asymmetry, while the most robust ones with the degree of mixture.Comment: 10 pages, 9 figs. to appear in Quantum Information & Computation (QIC
    corecore